Hill-Petrucci Page 163 # 66,68,70-74

- 66. a. neither the oxidation states do not change
 - b. neither the oxidation states do not change
 - c. reduction. The oxidation state of carbon decreases from +2 to -4.

68. a. 1,2,1,1,2 b. 1,4,1,2,2 c. 1,4,6,1,2,3 d. 3,1,4,3,2,1 e. 3,1,14,3,2,7

70. Oxidizing Agent Reducing Agent

а.	NO ₂	CH ₄
b.	Ca(ClO) ₂	HCI
с.	SeO ₃ ²⁻	I-
d.	NO ₃ ⁻	Fe ²⁺
e.	$Cr_2O_7^{2-}$	Zn

- 71. a. Nothing is reduced b. Nothing is reduced
- 72. a. Nothing is oxidized b. Nothing is reduced
- 73. a. $Zn(s) + 2H^{+}(aq) \rightarrow Zn^{2+}(aq) + H_{2}(g)$ b. $Cu(s) + Zn^{2+}(aq) \rightarrow No \text{ Reaction}$ c. $Fe(s) + 2Ag^{+}(aq) \rightarrow Fe^{+}(aq) + 2Ag(s)$ d. $Au(s) + H^{+}(aq) \rightarrow No \text{ Reaction}$
- 74. The first and second reactions mean that M is not Cu,Ag,Hg, or Au, and it makes a 2⁺ ion. The reaction with Fe^{2+} means that it is Mg,Al,Cr, or An. The reaction of Al metal with M ions means that M is below Al in the activity series. That leaves Cr or Zn, and since it does not react with the Zn^{2+} ion, M is Cr.