Cell Structure

Chapter 4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© SPL/Photo Researchers Inc.

Cells were discovered in 1665 by Robert Hooke.

Early studies of cells were conducted by

- Mathias Schleiden (1838)
- Theodor Schwann (1839)

Schleiden and Schwann proposed the Cell Theory.

Cell Theory

- 1. All organisms are composed of cells.
- 2. Cells are the smallest living things.
- 3. Cells arise only from pre-existing cells.

All cells today represent a continuous line of descent from the first living cells.

Cell size is limited.

-As cell size increases, it takes longer for material to diffuse from the cell membrane to the interior of the cell.

Surface area-to-volume ratio: as a cell increases in size, the volume increases 10x faster than the surface area

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Cell radius (<i>r</i>)	1 unit	10 unit
Surface area ($4\pi r^2$)	12.57 unit ²	1257 unit ²
Volume $(\frac{4}{3}\pi r^3)$	4.189 unit ³	4189 unit ³
Surface Area / Volume	3	0.3

(1st from top): © David M. Phillips/Visuals Unlimited; (2nd from top): © Mike Abbey/Visuals Unlimited;(3rd from top): © David M. Phillips/Visuals Unlimited; (4th from top): © Mike Abbey/Visuals Unlimited; (5th from top): Dr. Torsten Wittmann/Photo Researchers Inc; (6th from top): © Med. Mic. Sciences: Cardiff Uni./Wellcome Photo Library; (7th from top): © Microworks/Phototake; (8th from top): © Stanley Flegler/Visuals Unlimited

Microscopes are required to visualize cells.

Light microscopes can resolve structures that are 200nm apart.

Electron microscopes can resolve structures that are 0.2nm apart.

Cell Theory

All cells have certain structures in common.

- 1. genetic material in a nucleoid or nucleus
- 2. cytoplasm a semifluid matrix
- 3. plasma membrane a phospholipid bilayer

Prokaryotic cells lack a membrane-bound nucleus. -genetic material is present in the nucleoid

- Two types of prokaryotes:
 - -archaea
 - -bacteria

Prokaryotic cells possess

- -genetic material in the nucleoid
- -cytoplasm
- -plasma membrane
- -cell wall
- -ribosomes
- -no membrane-bound organelles

Prokaryotic cell walls -protect the cell and maintain cell shape

Bacterial cell walls -may be composed of peptidoglycan -may be **Gram positive** or **Gram negative**

Archaean cell walls lack peptidoglycan.

Flagella

- -present in some prokaryotic cells
- -used for locomotion
- -rotary motion propels the cell

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

b.

Eukaryotic cells

- -possess a membrane-bound nucleus
- -are more complex than prokaryotic cells
- -compartmentalize many cellular functions within organelles and the endomembrane system

-possess a cytoskeleton for support and to maintain cellular structure

Nucleus

- -stores the genetic material of the cell in the form of multiple, linear chromosomes
- -surrounded by a **nuclear envelope** composed of 2 phospholipid bilayers
- -in chromosomes DNA is organized with proteins to form chromatin

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Ribosomes

- -the site of protein synthesis in the cell -composed of **ribosomal RNA** and proteins
- -found within the cytosol of the cytoplasm and attached to internal membranes

Endomembrane system

- -a series of membranes throughout the cytoplasm
- -divides cell into compartments where different cellular functions occur
- 1. endoplasmic reticulum
- 2. Golgi apparatus
- 3. lysosomes

Rough endoplasmic reticulum (RER)

-membranes that create a network of channels throughout the cytoplasm

-attachment of ribosomes to the membrane gives a rough appearance

-synthesis of proteins to be secreted, sent to lysosomes or plasma membrane

- **Smooth endoplasmic reticulum (SER)**
 - -relatively few ribosomes attached
 - -functions:
 - -synthesis of membrane lipids -calcium storage
 - -detoxification of foreign substances

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(bottom right): © R. Bolender & D. Fawcett/Visuals Unlimited

0.08 µm

Golgi apparatus

-flattened stacks of interconnected membranes

-packaging and distribution of materials to different parts of the cell

-synthesis of cell wall components

Lysosomes

-membrane bound vesicles containing digestive enzymes to break down macromolecules

-destroy cells or foreign matter that the cell has engulfed by phagocytosis

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Microbodies

- -membrane bound vesicles
- -contain enzymes
- -not part of the endomembrane system
- -glyoxysomes in plants contain enzymes for converting fats to carbohydrates
- -peroxisomes contain oxidative enzymes and catalase

Vacuoles

-membrane-bound structures with various functions depending on the cell type

There are different types of vacuoles: -central vacuole in plant cells -contractile vacuole of some protists -vacuoles for storage

Mitochondria

Mitochondria

-organelles present in all types of eukaryotic cells

-contain oxidative metabolism enzymes for transferring the energy within macromolecules to ATP

-found in all types of eukaryotic cells

Mitochondria

- -surrounded by 2 membranes
 - -smooth outer membrane
 - -folded inner membrane with layers called cristae
- -matrix is within the inner membrane

-intermembrane space is located

between the two membranes

-contain their own DNA

Mitochondria

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(bottom right): © Dr. Donald Fawcett & Dr. Porter/Visuals Unlimited

0.2 µm

Chloroplasts

Chloroplasts

- -organelles present in cells of plants and some other eukaryotes
- -contain chlorophyll for photosynthesis
- -surrounded by 2 membranes
- -thylakoids are membranous sacs within the inner membrane
- -grana are stacks of thylakoids

Chloroplasts

Mitochondria & Chloroplasts

Endosymbiosis

-proposal that eukaryotic organelles evolved through a symbiotic relationship

-one cell engulfed a second cell and a symbiotic relationship developed

-mitochondria and chloroplasts are thought to have evolved this way

Mitochondria & Chloroplasts

Much evidence supports this endosymbiosis theory.

Mitochondria and chloroplasts:

- -have 2 membranes
- -possess DNA and ribosomes
- -are about the size of a prokaryotic cell
- -divide by a process similar to bacteria

Mitochondria & Chloroplasts

Cytoskeleton

Cytoskeleton

- -network of protein fibers found in all eukaryotic cells
- -supports the shape of the cell
- -keeps organelles in fixed locations
- -helps move materials within the cell

Cytoskeleton

Cytoskeleton fibers include

- -actin filaments responsible for cellular contractions, crawling, "pinching"
- -microtubules provide organization to the cell and move materials within the cell
- -intermediate filaments provide structural stability

Cytoskeleton

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a. Actin filaments

b. Microtubules

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

c. Intermediate filament

Cell Movement

Cell movement takes different forms.

- -Crawling is accomplished via actin filaments and the protein **myosin**.
- -Flagella undulate to move a cell.
- -Cilia can be arranged in rows on the surface of a eukaryotic cell to propel a cell forward.

Cell Movement

The cilia and flagella of eukaryotic cells have a similar structure:

-9-2 structure: 9 pairs of microtubules surrounded by a 2 central microtubules

-Cilia are usually more numerous than flagella on a cell.

Cell Movement

Extracellular structures include:

-cell walls of plants, fungi, some protists -extracellular matrix surrounding animal cells

Cell walls

-present surrounding the cells of plants, fungi, and some protists

-the carbohydrates present in the cell wall vary depending on the cell type:

-plant and protist cell walls - cellulose

-fungal cell walls - chitin

Extracellular matrix (ECM)

- -surrounds animal cells
- -composed of glycoproteins and fibrous proteins such as collagen
- -may be connected to the cytoplasm via integrin proteins present in the plasma membrane

Copyright © The McGraw-Hill Companies, Inc. Permis	ssion required for reproduction or display.
--	---

TABLE 4.3	A Comparison of Prokaryotic, Animal, and Plant Cells				
	Prokaryote	Animal	Plant		
EXTERIOR STRUCTURES					
Cell wall	Present (protein-polysaccharide)	Absent	Present (cellulose)		
Cell membrane	Present	Present	Present		
Flagella/cilia	Flagella may be present	May be present (9 + 2 structure)	Absent except in sperm of a few species $(9 + 2 \text{ structure})$		

TABLE 4.3	A Comparison of Prokaryotic, Animal, and Plant Cells					
	Prokaryote	Animal	Plant			
INTERIOR STRUCTURES						
ER	Absent	Usually present	Usually present			
Ribosomes	Present	Present	Present			
Microtubules	Absent	Present	Present			
Centrioles	Absent	Present	Absent			
Golgi apparatus	Absent	Present	Present			
Nucleus	Absent	Present	Present			
Mitochondria	Absent	Present	Present			
Chloroplasts	Absent	Absent	Present			
Chromosomes	A single circle of DNA	Multiple; DNA-protein complex	Multiple; DNA-protein complex			
Lysosomes	Absent	Usually present	Present			
Vacuoles	Absent	Absent or small	Usually a large single vacuole			

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.