Transcription and Translation

Chapter 14

p. 263-273

Protein Structure

- Made up of amino acids
- Polypeptide- string of amino acids
- 20 amino acids are arranged in different orders to make a variety of proteins
- Assembled on a ribosome

Amino acids with hydrophobic side groups

Amino acids with hydrophilic side groups

Amino acids that are inbetween

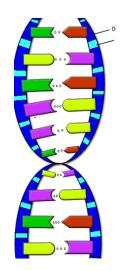
(cvs)

Questions to be answered today

- o How do we get from the bases found in DNA to amino acids?
- How do we get from a bunch of amino acids to proteins?

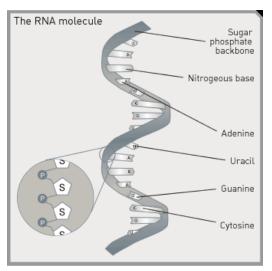
DNA couble relix un vincs DNA now single-stranded

- •New DNA strand forms using complementary base pairing (A-T, C-G)
- Used to prepare DNA for cell division
- Whole genome copied/replicated

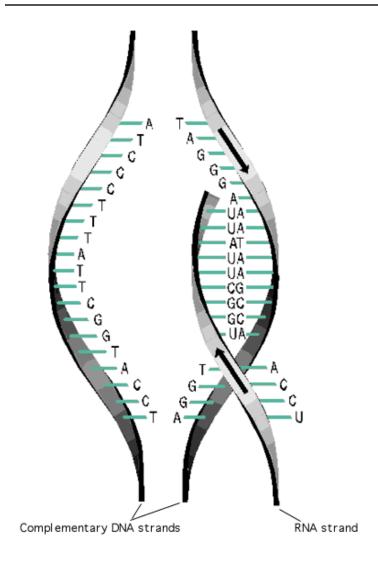

Transcription and Translation: An Overview (aka the Central Dogma)

DNA **Transcription** RNA **Translation** Protein

RNA vs. DNA


DNA

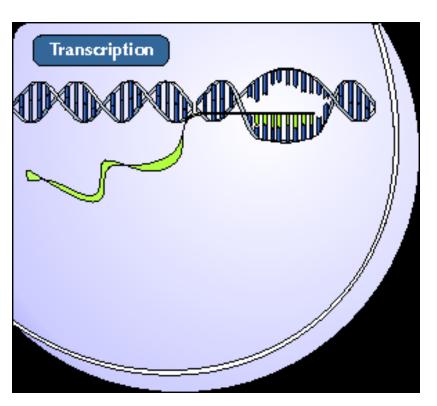
- Double stranded
- Deoxyribose sugar
 Ribose sugar
- o Bases: C,G A,T


RNA

- Single stranded
- Bases: C,G,A,U

Both contain a sugar, phosphate, and base.

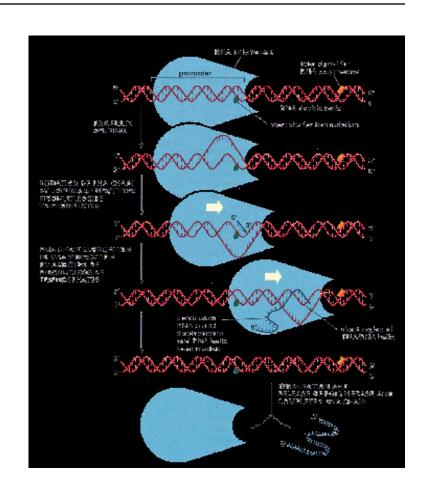
Transcription

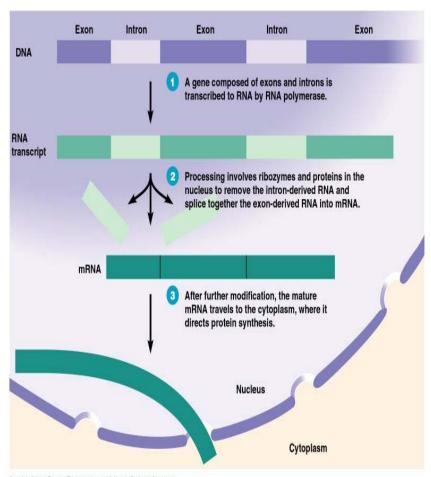


- RNA forms base pairs with DNA
 - C-G
 - A-U
- Primary transcriptlength of RNA that results from the process of transcription

TRANSCRIPTION

ACGATACCCTGACGAGCGTTAGCTATCG UGCUAUGGGACU


Major players in transcription


o mRNA- type of RNA that encodes information for the synthesis of proteins and carries it to a ribosome from the nucleus

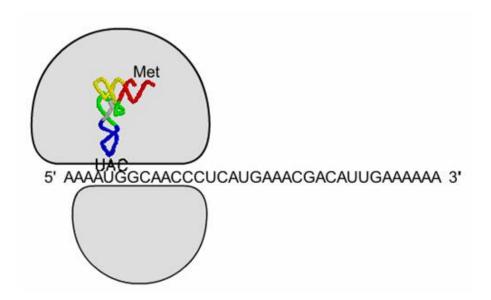
Major players in transcription

- RNA polymerasecomplex of enzymes with 2 functions:
 - Unwind DNA sequence
 - Produce primary transcript by stringing together the chain of RNA nucleotides

mRNA Processing

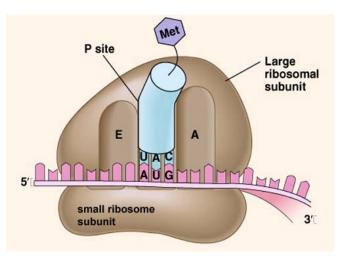
Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings

- Primary transcript is not mature mRNA
- DNA sequence has coding regions (exons) and noncoding regions (introns)
- Introns must be removed before primary transcript is mRNA and can leave nucleus

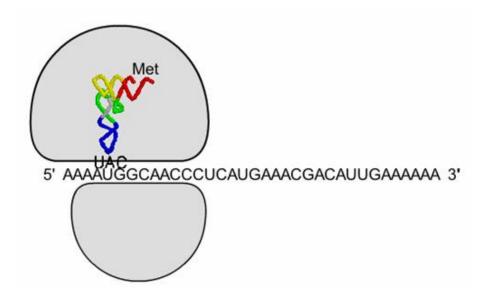

Transcription is done...what now?

Now we have mature mRNA transcribed from the cell's DNA. It is leaving the nucleus through a nuclear pore. Once in the cytoplasm, it finds a ribosome so that translation can begin.

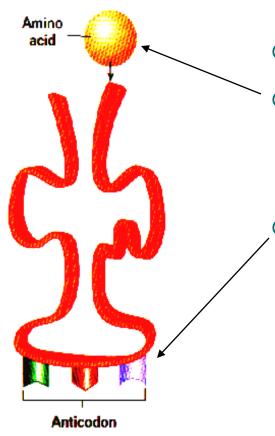
We know how mRNA is made, but how do we "read" the code?


Translation

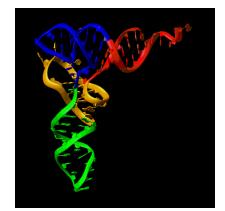
- Second stage of protein production
- o mRNA is on a ribosome


Ribosomes

- 2 subunits, separate in cytoplasm until they join to begin translation
 - Large
 - Small
- Contain 3 binding sites
 - E
 - P
 - A

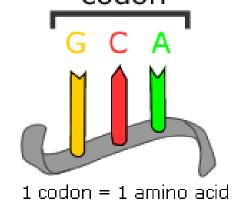


Translation


- Second stage of protein production
- o mRNA is on a ribosome
- tRNA brings amino acids to the ribosome

tRNA

- Transfer RNA
- Bound to one amino acid on one end
- Anticodon on the other end complements mRNA codon



tRNA Function

- Amino acids must be in the correct order for the protein to function correctly
- tRNA lines up amino acids using mRNA code

Reading the DNA code

- Every 3 DNA bases pairs with 3 mRNA bases
- Every group of 3 mRNA bases encodes a single amino acid
- Codon- coding triplet of mRNA bases

How many bases code for each amino acid?

- o 1 base = 1 amino acid
 - 4¹ =
- o 2 bases = 1 amino acid
 - $4^2 =$
- o 3 bases = 1 amino acid
 - $4^3 =$

The Genetic Code

First positi			S	econd	position	1			Third osition
20	U		С		Α		G		
U	UUU UUG UUG	Phe Phe Leu Leu	UCU UCC UCA UCG	Ser Ser Ser	UAU UAC UAA UAG	Tyr Tyr Stop Stop	UGU UGC UGA UGG	Cys Cys Stop Trp	U C A G
С	CUU CUC CUA CUG	Leu Leu Leu Leu	CCU CCC CCA CCG	Pro Pro Pro	CAU CAC CAA CAG	His His Gln Gln	CGU CGC CGA CGG	Arg Arg Arg Arg	U C A G
А	AUU AUC AUA AUG	lle lle lle Met	ACU ACC ACA ACG	Thr Thr Thr Thr	AAU AAC AAA AAG	Asn Asn Lys Lys	AGU AGC AGA AGG	Ser Ser Arg Arg	U C A G
G	GUU GUC GUA GUG	Val Val Val Val	GCU GCC GCA GCG	Ala Ala Ala Ala	GAU GAC GAA GAG	Asp Asp Glu Glu	GGU GGC GGA GGG	Gly Gly Gly Gly	U C A G

ACGATACCCTGACGAGCGTTAGCTATCG UGCUAUGGGACUG

First ositi			S	econd	position	1			Third ositio
23	U		С		A		G		
	UUU	Phe	UCU	Ser	UAU	Tyr	UGU	Cys	U
U	UUC	Phe	UCC	Ser	UAC	Tyr	UGC	Cys	С
	UUA	Leu	UCA	Ser	UAA	Stop	UGA	Stop	Α
	UUG	Leu	UCG	Ser	UAG	Stop	UGG	Trp	G
С	CUU	Leu	CCU	Pro	CAU	His	CGU	Arg	υ
	CUC	Leu	CCC	Pro	CAC	His	CGC	Arg	С
	CUA	Leu	CCA	Pro	CAA	Gln	CGA	Arg	Α
	CUG	Leu	CCG	Pro	CAG	Gln	CGG	Arg	G
Α	AUU	lle	ACU	Thr	AAU	Asn	AGU	Ser	υ
	AUC	lle	ACC	Thr	AAC	Asn	AGC	Ser	С
	AUA	lle	ACA	Thr	AAA	Lys	AGA	Arg	Α
	AUG	Met	ACG	Thr	AAG	Lys	AGG	Arg	G
G	GUU	Val	GCU	Ala	GAU	Asp	GGU	Gly	υ
	GUC	Val	GCC	Ala	GAC	Asp	GGC	Gly	С
	GUA	Val	GCA	Ala	GAA	Glu	GGA	Gly	Α
	GUG	Val	GCG	Ala	GAG	Glu	GGG	Gly	G

Which codons code for which amino acids?

- Genetic code- inventory of linkages between nucleotide triplets and the amino acids they code for
- A gene is a segment of RNA that brings about transcription of a segment of RNA

Transcription vs. Translation Review

Transcription

- Process by which genetic information encoded in DNA is copied onto messenger RNA
- Occurs in the nucleus
- \circ DNA \longrightarrow mRNA

Translation

- Process by which information encoded in mRNA is used to assemble a protein at a ribosome
- Occurs on a Ribosome
- o mRNA → protein