Practice

Continuity and End Behavior

Determine whether each function is continuous at the given x-value. Justify your answer using the continuity test.

1. $y = \frac{2}{3r^2}$; $x = -1$	2. $y = \frac{x^2 + x + 4}{2}$; $x = 1$
Yes; the function is defined at $x = -1$; y approaches $\frac{2}{3}$ as x approaches -1 from both sides; $f(-1) = \frac{2}{3}$.	Yes; the function is defined at $x = 1$; y approaches 3 as x approaches 1 from both sides; $f(1) = 3$.
3. $y = x^3 - 2x + 2; x = 1$	4. $y = \frac{x-2}{x+4}$; $x = -4$
Yes; the function is defined at $x = 1$; y approaches 1 as x approaches 1 from both sides; f(1) = 1.	No; the function is undefined at $x = -4$.
Describe the end behavior of each functio	n.
5. $y = 2x^5 - 4x$	6. $y = -2x^6 + 4x^4 - 2x + 1$
$y \to \infty$ as $x \to \infty$,	$y \to -\infty$ as $x \to \infty$,
$V \rightarrow -\infty$ as $X \rightarrow -\infty$	$V \rightarrow -\infty$ as $X \rightarrow -\infty$

7. $y = x^4 - 2x^3 + x$	8. $y = -4x^3 + 5$
$y \to \infty$ as $x \to \infty$,	$y \rightarrow -\infty$ as $x \rightarrow \infty$,
$y \rightarrow \infty$ as $x \rightarrow -\infty$	$y \rightarrow \infty$ as $x \rightarrow -\infty$

Given the graph of the function, determine the interval(s) for which the function is increasing and the interval(s) for which the function is decreasing.

increasing for x < -1 and x > 1; decreasing for -1 < x < 1

10. *Electronics* Ohm's Law gives the relationship between resistance *R*, voltage *E*, and current *I* in a circuit as $R = \frac{E}{I}$. If the voltage remains constant but the current keeps increasing in the circuit, what happens to the resistance? **Resistance decreases and approaches zero.**

Tł it

th

va to is wi

> Taair A[á Sd

Us

1.

2.

3.

4.

5.

6.